
eGrabber
Using CustomLogic

3602 Coaxlink Octo 3603 Coaxlink Quad CXP-12
3603-4 Coaxlink Quad CXP-12

USER GUIDE

© EURESYS S.A. 2024 - Doc. D209ET-CustomLogic User Guide-eGrabber-24.04.0.2187 built on 2024-04-25



2

This documentation is provided with eGrabber 24.04.0 (doc build 2187).
www.euresys.com

This documentation is subject to the General Terms and Conditions stated on the website of EURESYS S.A.
and available on the webpage https://www.euresys.com/en/Menu-Legal/Terms-conditions. The article 10
(Limitations of Liability and Disclaimers) and article 12 (Intellectual Property Rights) are more specifically
applicable.

eGrabber Using CustomLogic

https://www.euresys.com/
https://www.euresys.com/en/Menu-Legal/Terms-conditions


3

Contents
1. Introduction 4

1.1. Principles 5
1.2. Availability 6
1.3. Framework 8

2. Interfaces 9
2.1. Global Signals 10
2.2. Data (Pixel) Stream Interface 11
2.3. Metadata Interface 15
2.4. On-Board Memory Interface 20
2.5. Memento Event Interface 30
2.6. Control/Status Interface 32
2.7. General Purpose I/O Interface 33

3. Reference Design 36
3.1. Introduction 37
3.2. Available Reference Modules 38
3.3. CustomLogic Delivery 43
3.4. Reference Design Build Procedure 44

4. Debugging 45
5. Simulation Testbench 46
6. GenApi Features 47

6.1. CustomLogicControlAddress 48
6.2. CustomLogicControlData 49

7. Managing Firmware 50
7.1. What's Firmware? 51
7.2. Firmware Manager Tools 52
7.3. Updating and Installing Firmware 54
7.4. Special Firmware Procedures 55
7.5. Firmware Recovery Switch 58

eGrabber Using CustomLogic



4

1. Introduction

1.1. Principles 5

1.2. Availability 6

1.3. Framework 8

eGrabber Using CustomLogic



5

1.1. Principles

CustomLogic allows users to add custom on-board image processing in the FPGA (Field
Programmable Gate Array) of Euresys frame grabbers fitted with a CustomLogic firmware
variant.

CustomLogic includes a design framework providing documented interfaces, which are used to
interconnect the custom image processing functions with the frame grabber.

eGrabber Using CustomLogic



6

1.2. Availability

NOTE
The CustomLogic installation package is only available on request to your
local Sales office.

CustomLogic is available for the following products and firmware variants:

3602 Coaxlink Octo

Firmware Variant Description Revision

1-camera, custom-logic

● CXP-6 DIN 4 CoaXPress interface
● One 1- or 2- or 4-connection area-scan camera
● 2 GB RAM DDR4 on-board memory
● 8-lane Gen 3 PCI Express interface

416

2-camera, line-scan,
custom-logic

● CXP-6 DIN 4 CoaXPress interface
● Two 1- or 2-connection line-scan cameras
● 2 GB RAM DDR4 on-board memory
● 8-lane Gen 3 PCI Express interface

416

eGrabber Using CustomLogic

https://www.euresys.com/Sales-offices-and-distributors


7

3603 Coaxlink Quad CXP-12 and 3603-4 Coaxlink Quad CXP-12

Firmware Variant Description Revision

1-camera, custom-logic

● CXP-12 HD-BNC 4 CoaXPress interface
● One 1- or 2- or 4-connection area-scan camera
● 2 GB (3603) or 4GB (3603-4) RAM DDR4 on-board

memory
● 8-lane Gen 3 PCI Express interface

416

1-camera, line-scan,
custom-logic

● CXP-12 HD-BNC 4 CoaXPress interface
● One 1- or 2- or 4-connection line-scan camera
● 2 GB (3603) or 4GB (3603-4) RAM DDR4 on-board

memory
● 8-lane Gen 3 PCI Express interface

416

2-camera, custom-logic

● CXP-12 HD-BNC 4 CoaXPress interface
● Two 1- or 2-connection area-scan cameras
● 2 GB (3603) or 4GB (3603-4) RAM DDR4 on-board

memory
● 8-lane Gen 3 PCI Express interface

416

2-camera, line-scan,
custom-logic

● CXP-12 HD-BNC 4 CoaXPress interface
● Two 1- or 2-connection line-scan cameras
● 2 GB (3603) or 4GB (3603-4) RAM DDR4 on-board

memory
● 8-lane Gen 3 PCI Express interface

416

4-camera, custom-logic

● CXP-12 HD-BNC 4 CoaXPress interface
● Four 1-connection area-scan cameras
● 2 GB (3603) or 4GB (3603-4) RAM DDR4 on-board

memory
● 8-lane Gen 3 PCI Express interface

416

3625 Coaxlink QSFP+

Firmware Variant Description Revision

1-camera, custom-logic

● CoaXPress-over-Fiber CoF-10 interface
● One 1- or 2- or 4-connection area-scan camera
● 4 GB RAM DDR4 on-board memory
● 8-lane Gen 3 PCI Express interface

4416

eGrabber Using CustomLogic



8

1.3. Framework

A Coaxlink CustomLogic framework provides the following built-in modules:

1. Full featured CoaXPress frame grabber.

2. On-board memory interface.

3. PCI Express interface with a DMA back-end channel.

4. Memento in Hardware event logging system.

5. User registers access via Euresys Driver API.

Sample block diagram

CustomLogic model

eGrabber Using CustomLogic



9

2. Interfaces

2.1. Global Signals 10

2.2. Data (Pixel) Stream Interface 11

2.3. Metadata Interface 15

2.4. On-Board Memory Interface 20

2.5. Memento Event Interface 30

2.6. Control/Status Interface 32

2.7. General Purpose I/O Interface 33

eGrabber Using CustomLogic



10

2.1. Global Signals

All available interfaces are in the same clock domain of 250 MHz and the CustomLogic global
signals are the following:

Signal Direction Description

clk250 Input 250 MHz clock source common to all CustomLogic
interfaces.

srst250 Input Synchronous reset (clk250) asserted during a PCI
Express reset.

eGrabber Using CustomLogic



11

2.2. Data (Pixel) Stream Interface

In this topic:

"Interface signals" on page 11
"Slave interface signals" on page 12
"Master interface signals" on page 13

"Timing diagram" on page 14

Interface signals

The Data Stream interface is based on the AMBA® AXI4-Stream Protocol Specification:
□ At the slave side, the CustomLogic receives images acquired from a CoaXPress Device (for

example a CoaXPress camera)
□ At the master side, the Data Stream interface transfers the resulting images/data

generated by the CustomLogic to the PCI Express DMA Back-End channel.

eGrabber Using CustomLogic

https://developer.arm.com/docs/ihi0051/a


12

Slave interface signals

Signal Width Direction Description

s_axis_aresetn N*1 Input

ARESETn resets the AMBA® AXI4-Stream
interface.
This pulse is asserted when a Stop Acquisition
command (DSStopAcquisition) is executed.
This signal should be used to clear the
CustomLogic internal Data Stream pipeline.

s_axis_tvalid N*1 Input

TVALID indicates that a corresponding master
interface is driving a valid transfer.
A transfer takes place when both TVALID and
TREADY are asserted.

s_axis_tready N*1 Output TREADY indicates that the CustomLogic can
accept a transfer in the current cycle.

s_axis_tdata N*W Input TDATA is the primary payload that is used to
provide the data passing across the interface.

s_axis_tuser N*4 Input

TUSER is user defined sideband information
that is transmitted alongside the data stream.
The TUSER content is encoded depending on
the variant type.
● For area-scan variants:

□ TUSER [0] => Start-of-Frame (SOF)
□ TUSER [1] => Start-of-Line (SOL)
□ TUSER [2] => End-of-Line (EOL)
□ TUSER [3] => End-of-Frame (EOF)

● For line-scan variants:
□ TUSER [0] => Start-of-Scan (SOS)
□ TUSER [1] => Start-of-Line (SOL)
□ TUSER [2] => End-of-Line (EOL)
□ TUSER [3] => End-of-Scan (EOS)

NOTE

In the Width column: “N” refers to the total number of interface slots, which
is the number of devices/cameras supported by the CustomLogic variant,
and "W" refers to STREAM_DATA_WIDTH, the stream data width per
device/camera.

● 3602 Coaxlink Octo
□ (1-camera, custom-logic) => N = 1; W = 128 ;
□ (2-camera, line-scan, custom-logic) => N = 2; W = 64;

● 3603 Coaxlink Quad CXP-12 and 3603-4 Coaxlink Quad CXP-12
□ (1-camera, custom-logic) => N = 1; W = 256;
□ (1-camera, line-scan, custom-logic) => N=1; W=256;
□ (2-camera, custom-logic) => N = 2; W = 128;
□ (4-camera, custom-logic) => N = 4; W = 64;

eGrabber Using CustomLogic



13

Master interface signals

Signal Width Direction Description

m_axis_tvalid N*1 Output

TVALID indicates that the CustomLogic is
driving a valid transfer.
A transfer takes place when both TVALID and
TREADY are asserted.

m_axis_tready N*1 Input
TREADY indicates that the PCI Express DMA
Back-End can accept a transfer in the current
cycle.

m_axis_tdata N*W Output TDATA is the primary payload that is used to
provide the data passing across the interface.

m_axis_tuser N*4 Output

TUSER is user defined sideband information
that is transmitted alongside the data stream.
The TUSER content is encoded depending on
the variant type.
● For area-scan variants:

□ TUSER [0] => Start-of-Buffer (SOB)
□ TUSER [1] => Reserved
□ TUSER [2] => Reserved
□ TUSER [3] => End-of-Buffer (EOB)

● For line-scan variants:
□ TUSER [0] => Start-of-Scan (SOS)
□ TUSER [1] => Start-of-Line (SOL)
□ TUSER [2] => End-of-Line (EOL)
□ TUSER [3] => End-of-Scan (EOS)

NOTE

In the Width column: “N” refers to the total number of interface slots, which
is the number of devices/cameras supported by the CustomLogic variant,
and "W" refers to STREAM_DATA_WIDTH, the stream data width per
device/camera.

● 3602 Coaxlink Octo
□ (1-camera, custom-logic) => N = 1; W = 128 ;
□ (2-camera, line-scan, custom-logic) => N = 2; W = 64;

● 3603 Coaxlink Quad CXP-12 and 3603-4 Coaxlink Quad CXP-12
□ (1-camera, custom-logic) => N = 1; W = 256;
□ (1-camera, line-scan, custom-logic) => N=1; W=256;
□ (2-camera, custom-logic) => N = 2; W = 128;
□ (4-camera, custom-logic) => N = 4; W = 64;

eGrabber Using CustomLogic



14

NOTE
At the CustomLogic master side, the m_axis_tuser signal has the function of
controlling the PCI Express DMA Back-End. The flags carried by m_axis_tuser
are interpreted depending on the variant type.

● For area-scan variants:
□ Start-of-Buffer: A cycle containing this flag starts a new buffer.
□ End-of-Buffer: A cycle containing this flag ends a buffer even if it still

has available space to accommodate new transfers.

● For line-scan variants:
□ Start-of-Scan: A cycle containing this flag starts a new buffer. When

the remaining space of a buffer is not sufficient to store an image line
data, the acquisition continues into a new buffer and the filled buffer
is made available to the application for processing.

□ End-of-Scan: A cycle containing this flag ends a buffer even if it still
has available space to accommodate new transfers.

Timing diagram

TVALID/TREADY handshake and TUSER flags timing diagram

In this example, we consider that the LinePitch is 64 bytes (4 transfer cycles of 16 bytes each)
and the full frame is composed of 10 lines/packet.

See also: For more information about the AMBA® AXI4-Stream protocol, please refer to Xilinx
“AXI Reference Guide (UG1037)” at www.xilinx.com and AMBA® AXI4-Stream Protocol
Specification at www.amba.com.

eGrabber Using CustomLogic

http://www.xilinx.com/
https://developer.arm.com/docs/ihi0051/a
https://developer.arm.com/docs/ihi0051/a
http://www.amba.com/


15

2.3. Metadata Interface

In this topic:

"Interface signals" on page 16
"CoaXPress Image Header group" on page 17
"CustomLogic group" on page 18

"Timing diagram" on page 19

The CoaXPress Image Header generated by the CoaXPress Device is exposed at the Metadata
interface. In addition to the CoaXPress Image Header, the Metadata interface also provides
information regarding pixel alignment, time-stamp...

eGrabber Using CustomLogic



16

Interface signals

At the slave side, the Metadata interface presents the prefix s and has the direction Input.

At the master side, it presents the prefix the prefix m and has the direction Output.

There are two groups of signals in the Metadata interface:
□ CoaXPress Image Header group – signals containing a copy of the CoaXPress Rectangular

Image Header issued by the CoaXPress Device.
□ CustomLogic group – signals informing time-stamp and data stream characteristics.

eGrabber Using CustomLogic



17

CoaXPress Image Header group

Signal Width Description

(m/s)_mdata_StreamId N*8 Unique stream ID.

(m/s)_mdata_SourceTag N*16

16 bit source image index. Incremented for each
transferred image, wraparound to 0 at 0xFFFF. The
same number shall be used by each stream
containing data relating to the same image.

(m/s)_mdata_Xsize N*24 24 bit value representing the image width in pixels.

(m/s)_mdata_Xoffs N*24
24 bit value representing the horizontal offset in
pixels of the image with respect to the left hand
pixel of the full Device image.

(m/s)_mdata_Ysize N*24 24 bit value representing the image height in pixels.
This value shall be set to 0 for line-scan images.

(m/s)_mdata_Yoff N*24
24 bit value representing the vertical offset in pixels
of the image with respect to the top line of the full
Device image.

(m/s)_mdata_DsizeL N*24 24 bit value representing the number of data words
per image line.

(m/s)_mdata_PixelF N*16 16 bit value representing the pixel format.

(m/s)_mdata_TapG N*16 16 bit value representing the tap geometry.

(m/s)_mdata_Flags N*8 Image flags.

NOTE

In the Width column: “N” refers to the total number of interface slots, which
is the number of devices/cameras supported by the CustomLogic variant.

● 3602 Coaxlink Octo
□ (1-camera, custom-logic) => N = 1;
□ (2-camera, line-scan, custom-logic) => N = 2;

● 3603 Coaxlink Quad CXP-12 and 3603-4 Coaxlink Quad CXP-12
□ (1-camera, custom-logic) => N = 1;
□ (1-camera, line-scan, custom-logic) => N=1;
□ (2-camera, custom-logic) => N = 2;
□ (4-camera, custom-logic) => N = 4;

NOTE
The descriptions are excerpts from CoaXPress Standard Version 2.0.

eGrabber Using CustomLogic



18

CustomLogic group

Signal Width Description

(m/s)_mdata_Timestamp N*32 Timestamp of the Device’s readout start event.

(m/s)_mdata_PixProcFlgs N*8

Pixel processing flags:
● PixProcFlgs[0] => RGB to BGR swap enabled.
● PixProcFlgs[1] => MSB pixel alignment

enabled.
● PixProcFlgs[2] => Packed acquisition enabled.
● PixProcFlgs[7:4] => LUT configuration.

(m/s)_mdata_Status N*32 32-bit vector that can be used by the
CustomLogic to report its status.

NOTE
At the slave side the Status value is 0x00000000.

NOTE

In the Width column: “N” refers to the total number of interface slots, which
is the number of devices/cameras supported by the CustomLogic variant.

● 3602 Coaxlink Octo
□ (1-camera, custom-logic) => N = 1;
□ (2-camera, line-scan, custom-logic) => N = 2;

● 3603 Coaxlink Quad CXP-12 and 3603-4 Coaxlink Quad CXP-12
□ (1-camera, custom-logic) => N = 1;
□ (1-camera, line-scan, custom-logic) => N=1;
□ (2-camera, custom-logic) => N = 2;
□ (4-camera, custom-logic) => N = 4;

eGrabber Using CustomLogic



19

Timing diagram

Metadata timing diagram

The Metadata signals are updated every time the TUSER flag SOF/SOB is asserted.

eGrabber Using CustomLogic



20

2.4. On-Board Memory Interface

In this topic:

"On-board memory partitions" on page 21

"AMBA® AXI4 channel architecture" on page 22

"AMBA® AXI4 interface signals" on page 23
"Master interface global signals" on page 23
"Master write address channel interface signals" on page 24
"Master write data channel interface signals" on page 25
"Master write response channel interface signals" on page 26
"Master read address channel interface signals" on page 27
"Master read data channel interface signals" on page 28

"AMBA® AXI4 timing diagram" on page 29

The on-board memory interface gives access to the memory resources available on the Euresys
frame grabbers. It is based on AMBA® AXI4, an industry-standard protocol described in the
AMBA® AXI and ACE Protocol Specification.

eGrabber Using CustomLogic

https://developer.arm.com/documentation/ihi0022/hc


21

On-board memory partitions

The on-board memory has 2 partitions: the CustomLogic partition and the FIFO Buffer partition.

FIFO Buffer partition

This part of the on-board memory resources is dedicated to the frame grabber for the
temporary storage of image data.

CustomLogic partition

This part of the on-board memory resources is dedicated to CustomLogic.

WARNING
Write and read operations outside of the CustomLogic partition must be
avoided. Any write outside of the CustomLogic partition can corrupt data
being acquired by the frame grabber.

The following parameters provide the base address and the size of the CustomLogic partition:

Signal Width Direction Description

onboard_mem_
base 32 Input

Indicates the base address of the
CustomLogic partition in the On-Board
Memory

onboard_mem_
size 32 Input

Indicates the size in bytes of the
CustomLogic partition in the On-Board
Memory

The partitions sizes are product-specific:

Product
Memory partition size [Gigabytes]

CustomLogic FIFO Buffer
3602 Coaxlink Octo 1 GB 1 GB
3603 Coaxlink Quad CXP-12 1 GB 1 GB
3603-4 Coaxlink Quad CXP-12 2 GB 2 GB

eGrabber Using CustomLogic



22

AMBA® AXI4 channel architecture

AMBA® AXI4 is a memory-mapped interface that consists of five channels:
□ Write Address Channel
□ Write Data Channel
□ Write Response Channel
□ Read Address Channel
□ Read Data Channel

Data can move in both directions between the master and slave simultaneously, and data
transfer sizes can vary. The limit in AMBA® AXI4 is a burst transaction of up to 256 data transfers.

eGrabber Using CustomLogic



23

AMBA® AXI4 interface signals

The following sections briefly describe the AMBA® AXI4 signals.

NOTE
For a complete view of signal, interface requirements and transaction
attributes, please refer to AMBA® AXI and ACE Protocol Specification
document at www.amba.com.

Master interface global signals

Signal Width Direction Description

m_axi_resetn 1 Input RESETn resets the AMBA® AXI4 interface.

eGrabber Using CustomLogic

https://developer.arm.com/documentation/ihi0022/hc
http://www.amba.com/


24

Master write address channel interface signals

Signal Width Direction Description

m_axi_awaddr 32 Output
Write address. The write address gives the
address of the first transfer in a write burst
transaction.

m_axi_awlen 8 Output

Burst length. The burst length gives the exact
number of transfers in a burst. This
information determines the number of data
transfers associated with the address.
Burst_Length = AWLEN[7:0] + 1

m_axi_awsize 3 Output
Burst size. This signal indicates the size in
bytes of each transfer in the burst.
Burst_Size = 2^AWSIZE[2:0]

m_axi_awburst 2 Output

Burst type. The burst type and the size
information, determine how the address for
each transfer within the burst is calculated.
Burst_Type: "00" = FIXED; "01" = INCR; "10" =
WRAP

m_axi_awlock 1 Output

Lock type. Provides additional information
about the atomic characteristics of the
transfer.
Atomic_Access: '0' Normal; '1' Exclusive

m_axi_awcache 4 Output

Memory type. This signal indicates how
transactions are required to progress through
a system.
Memory_Attributes:

□ AWCACHE[0] Bufferable
□ AWCACHE[1] Cacheable
□ AWCACHE[2] Read-allocate
□ AWCACHE[3] Write-allocate

m_axi_awprot 3 Output

Protection type. This signal indicates the
privilege and security level of the transaction,
and whether the transaction is a data access
or an instruction access.
Access_Permissions:

□ AWPROT[0] Privileged
□ AWPROT[1] Non-secure
□ AWPROT[2] Instruction

m_axi_awqos 4 Output
Quality of Service, QoS. The QoS identifier
sent for each write transaction.
Quality_of_Service: Priority level

m_axi_awvalid 1 Output
Write address valid. This signal indicates that
the channel is signaling valid write address
and control information.

m_axi_awready 1 Input
Write address ready. This signal indicates that
the slave is ready to accept an address and
associated control signals.

eGrabber Using CustomLogic



25

WARNING
It is strongly recommended to set m_axi_awqos values below 8 to not disturb
the other agents connected to the On-Board Memory.

NOTE
The descriptions are excerpts from AMBA® AXI and ACE Protocol
Specification.

Master write data channel interface signals

Signal Width Direction Description

m_axi_wdata W Output Write data.

m_axi_wstrb W/8 Output

Write strobes. This signal indicates which byte
lanes hold valid data. There is one write
strobe bit for each eight bits of the write data
bus.

m_axi_wlast 1 Output Write last. This signal indicates the last
transfer in a write burst.

m_axi_wvalid 1 Output Write valid. This signal indicates that valid
write data and strobes are available.

m_axi_wready 1 Input Write ready. This signal indicates that the
slave can accept the write data.

NOTE

In the Width column: "W" refers to MEMORY_DATA_WIDTH, the data width of
the write data channel.

● 3602 Coaxlink Octo
□ (1-camera, custom-logic) => W = 128 ;
□ (2-camera, line-scan, custom-logic) => W = 256;

● 3603 Coaxlink Quad CXP-12 and 3603-4 Coaxlink Quad CXP-12
□ (1-camera, custom-logic) => W = 256;
□ (1-camera, line-scan, custom-logic) => W=256;
□ (2-camera, custom-logic) => W = 256;
□ (4-camera, custom-logic) => W = 256;

NOTE
The descriptions are excerpts from AMBA® AXI and ACE Protocol
Specification.

eGrabber Using CustomLogic

https://developer.arm.com/documentation/ihi0022/hc
https://developer.arm.com/documentation/ihi0022/hc
https://developer.arm.com/documentation/ihi0022/hc
https://developer.arm.com/documentation/ihi0022/hc


26

Master write response channel interface signals

Signal Width Direction Description

m_axi_bresp 2 Input

Write response. This signal indicates the
status of the write transaction.
Response:

□ "00" = OKAY
□ "01" = EXOKAY
□ "10" = SLVERR
□ "11" = DECERR

m_axi_bvalid 1 Input
Write response valid. This signal indicates
that the channel is signaling a valid write
response.

m_axi_bready 1 Output Response ready. This signal indicates that
the master can accept a write response.

NOTE
The descriptions are excerpts from AMBA® AXI and ACE Protocol
Specification.

For m_axi_bresp:
□ OKAY: Normal access success. Indicates that a normal access has been successful. Can

also indicate an exclusive access has failed. See OKAY, normal access success.
□ EXOKAY: Exclusive access okay. Indicates that either the read or write portion of an

exclusive access has been successful.
□ SLVERR: Slave error. Used when the access has reached the slave successfully, but the

slave wishes to return an error condition to the originating master.
□ DECERR: Decode error. Generated, typically by an interconnect component, to indicate

that there is no slave at the transaction address.

eGrabber Using CustomLogic

https://developer.arm.com/documentation/ihi0022/hc
https://developer.arm.com/documentation/ihi0022/hc


27

Master read address channel interface signals

Signal Width Direction Description

m_axi_araddr 32 Output
Read address. The read address gives the
address of the first transfer in a read burst
transaction.

m_axi_arlen 8 Output

Burst length. The burst length gives the exact
number of transfers in a burst. This
information determines the number of data
transfers associated with the address.
Burst_Length = ARLEN[7:0] + 1

m_axi_arsize 3 Output
Burst size. This signal indicates the size in
bytes of each transfer in the burst.
Burst_Size = 2^ARSIZE[2:0]

m_axi_arburst 2 Output

Burst type. The burst type and the size
information, determine how the address for
each transfer within the burst is calculated.
Burst_Type: "00" = FIXED; "01" = INCR; "10" =
WRAP

m_axi_arlock 1 Output

Lock type. Provides additional information
about the atomic characteristics of the
transfer.
Atomic_Access: '0' Normal; '1' Exclusive

m_axi_arcache 4 Output

Memory type. This signal indicates how
transactions are required to progress through
a system.
Memory_Attributes:

□ ARCACHE[0] Bufferable
□ ARCACHE[1] Cacheable
□ ARCACHE[2] Read-allocate
□ ARCACHE[3] Write-allocate

m_axi_arprot 3 Output

Protection type. This signal indicates the
privilege and security level of the transaction,
and whether the transaction is a data access
or an instruction access.
Access_Permissions:

□ ARPROT[0] Privileged
□ ARPROT[1] Non-secure
□ ARPROT[2] Instruction

m_axi_arqos 4 Output
Quality of Service, QoS. The QoS identifier
sent for each write transaction.
Quality_of_Service: Priority level

m_axi_arvalid 1 Output
Read address valid. This signal indicates that
the channel is signaling valid read address
and control information.

m_axi_arready 1 Input
Read address ready. This signal indicates that
the slave is ready to accept an address and
associated control signals.

eGrabber Using CustomLogic



28

WARNING
It is strongly recommended to set m_axi_awqos values below 8 to not disturb
the other agents connected to the On-Board Memory.

NOTE
The descriptions are excerpts from AMBA® AXI and ACE Protocol
Specification.

Master read data channel interface signals

Signal Width Direction Description

m_axi_rdata W Input Read data.

m_axi_rresp 2 Input

Read response. This signal indicates the
status of the read transfer.
Response: "00" = OKAY; "01" = EXOKAY; "10"
= SLVERR; “11” = DECERR

m_axi_rlast 1 Input Read last. This signal indicates the last
transfer in a read burst.

m_axi_rvalid 1 Input Read valid. This signal indicates that the
channel is signaling the required read data.

m_axi_rready 1 Output
Read ready. This signal indicates that the
master can accept the read data and
response information.

NOTE

In the Width column: "W" refers to MEMORY_DATA_WIDTH, the data width of
the write data channel.

● 3602 Coaxlink Octo
□ (1-camera, custom-logic) => W = 128 ;
□ (2-camera, line-scan, custom-logic) => W = 256;

● 3603 Coaxlink Quad CXP-12 and 3603-4 Coaxlink Quad CXP-12
□ (1-camera, custom-logic) => W = 256;
□ (1-camera, line-scan, custom-logic) => W=256;
□ (2-camera, custom-logic) => W = 256;
□ (4-camera, custom-logic) => W = 256;

NOTE
The descriptions are excerpts from AMBA® AXI and ACE Protocol
Specification.

eGrabber Using CustomLogic

https://developer.arm.com/documentation/ihi0022/hc
https://developer.arm.com/documentation/ihi0022/hc
https://developer.arm.com/documentation/ihi0022/hc
https://developer.arm.com/documentation/ihi0022/hc


29

AMBA® AXI4 timing diagram

VALID/READY handshake timing diagram

eGrabber Using CustomLogic



30

2.5. Memento Event Interface

The Memento Event interface allows the CustomLogic to send timestamped events to the
Memento Logging tool with a precision of 1 µs.

Along with the timestamped event, two 32-bit arguments are reported in Memento as follows:

ARG_0 ARG_1
[ts:0195.350699] Message from CustomLogic: 0x00000003 0x00000002

eGrabber Using CustomLogic



31

Master interface signals

Signal Width Direction Description

m_memento_event N*1 Output Pulse of one cycle indicating a
CustomLogic event.

m_memento_arg0 N*32 Output
32-bit argument that is reported in
Memento Logging tool along with the
corresponding CustomLogic event.

m_memento_arg1 N*32 Output
32-bit argument that is reported in
Memento Logging tool along with the
corresponding CustomLogic event.

NOTE

In the Width column: “N” refers to the total number of interface slots, which
is the number of devices/cameras supported by the CustomLogic variant.

● 3602 Coaxlink Octo
□ (1-camera, custom-logic) => N = 1;
□ (2-camera, line-scan, custom-logic) => N = 2;

● 3603 Coaxlink Quad CXP-12 and 3603-4 Coaxlink Quad CXP-12
□ (1-camera, custom-logic) => N = 1;
□ (1-camera, line-scan, custom-logic) => N=1;
□ (2-camera, custom-logic) => N = 2;
□ (4-camera, custom-logic) => N = 4;

eGrabber Using CustomLogic



32

2.6. Control/Status Interface

The Control/Status interface allows you to read or write registers inside the CustomLogic via
"GenApi Features" on page 47.

The use of this interface strongly depends on how the CustomLogic defines the Control/Status
interface. The recommended definition is to use this interface as Address/Data Control Registers
as illustrated in the reference design file control_registers.vhd.

Interface signals

Signal Width Direction Description

s_ctrl_addr 16 Input
16-bit WR/RD Address. The WR/RD
Address selects the register to be
read/written.

s_ctrl_data_wr_en 1 Input Pulse of one cycle indicating an update in
s_ctrl_data_wr.

s_ctrl_data_wr 32 Input 32-bit Write Data. Write a 32-bit vector
into a selected register.

s_ctrl_data_rd 32 Output 32-bit Read Data. Copy a 32-bit vector
from a selected register.

eGrabber Using CustomLogic



33

2.7. General Purpose I/O Interface

The General Purpose I/O (GPIO) interface gives access to the status of all I/Os available in the
frame grabber. It also allows the user to control the ‘User Output Register’.

For more information on the General Purpose I/O and the User Output Register, please refer to
the Functional Guide and the Hardware Manual sections in the Coaxlink series mini-site of the
eGrabber online documentation.

eGrabber Using CustomLogic



34

Interface signals

Signal Width Direction Description

user_output_ctrl 16 Output

Control the User Output Register:
□ Ctrl[1:0] => UserOutput0
□ Ctrl[3:2] => UserOutput1
□ Ctrl[5:4] => UserOutput2
□ Ctrl[7:6] => UserOutput3
□ Ctrl[9:8] => UserOutput4
□ Ctrl[11:10] => UserOutput5
□ Ctrl[13:12] => UserOutput6
□ Ctrl[15:14] => UserOutput7

Each UserOutput register can be
controlled independently1 .
The ‘Ctrl’ fields are encoded as follows:

□ “01” => UserOutputx <= ‘1’
□ “10” => UserOutputx <= ‘0’
□ Others => No change

custom_logic_
output_ctrl 32 Output

Control the general purpose outputs
(TTLIO, IOUT, MIO) available on the frame
grabber:

□ Ctrl[0] => CustomLogicOutput0
□ Ctrl[1] => CustomLogicOutput1
□ Ctrl[2] => CustomLogicOutput2
□ Ctrl[3] => CustomLogicOutput3
□ Ctrl[4] => CustomLogicOutput4
□ Ctrl[5] => CustomLogicOutput5
□ Ctrl[6] => CustomLogicOutput6
□ Ctrl[7] => CustomLogicOutput7
□ Ctrl[8] => CustomLogicOutput8
□ Ctrl[9] => CustomLogicOutput9
□ Ctrl[10] => CustomLogicOutput10
□ Ctrl[11] => CustomLogicOutput11
□ Ctrl[12] => CustomLogicOutput12
□ Ctrl[13] => CustomLogicOutput13
□ Ctrl[14] => CustomLogicOutput14
□ Ctrl[15] => CustomLogicOutput15
□ Ctrl[16] => CustomLogicOutput16
□ Ctrl[17] => CustomLogicOutput17
□ Ctrl[18] => CustomLogicOutput18
□ Ctrl[19] => CustomLogicOutput19
□ Ctrl[20] => CustomLogicOutput20
□ Ctrl[21] => CustomLogicOutput21
□ Ctrl[22] => CustomLogicOutput22
□ Ctrl[23] => CustomLogicOutput23
□ Ctrl[24] => CustomLogicOutput24
□ Ctrl[25] => CustomLogicOutput25
□ Ctrl[26] => CustomLogicOutput26
□ Ctrl[27] => CustomLogicOutput27
□ Ctrl[28] => CustomLogicOutput28
□ Ctrl[29] => CustomLogicOutput29
□ Ctrl[30] => CustomLogicOutput30
□ Ctrl[31] => CustomLogicOutput31

The ‘Ctrl’ fields are encoded as follows:
□ ‘0’ => CustomLogicOutputx <= ‘0’
□ ‘1’ => CustomLogicOutputx <= ‘1’

user_output_
status 8 Input

User Output Register status:
□ Status[0] => UserOutput0
□ Status[1] => UserOutput1
□ Status[2] => UserOutput2
□ Status[3] => UserOutput3
□ Status[4] => UserOutput4
□ Status[5] => UserOutput5
□ Status[6] => UserOutput6

1 Each ‘Ctrl’ field is evaluated only once every time a change in the field is detected. It means that a UserOutput state
can be changed via the eGrabber driver API even if the corresponding ‘Ctrl’ field is constantly forced to “01”.

eGrabber Using CustomLogic



35

Signal Width Direction Description

□ Status[7] => UserOutput7

standard_io_set1_
status 10 Input

Standard I/O set #1 status:
□ Status[0] => DIN11
□ Status[1] => DIN12
□ Status[2] => IIN11
□ Status[3] => IIN12
□ Status[4] => IIN13
□ Status[5] => IIN14
□ Status[6] => IOUT11
□ Status[7] => IOUT12
□ Status[8] => TTLIO11
□ Status[9] => TTLIO12

standard_io_set2_
status 10 Input

Standard I/O set #2 status:
□ Status[0] => DIN21
□ Status[1] => DIN22
□ Status[2] => IIN21
□ Status[3] => IIN22
□ Status[4] => IIN23
□ Status[5] => IIN24
□ Status[6] => IOUT21
□ Status[7] => IOUT22
□ Status[8] => TTLIO21
□ Status[9] => TTLIO22

module_io_set_
status 40 Input

I/O Extension Module status:
□ Status[0] => MIO1
□ Status[1] => MIO2
□ …
□ Status[39] => MIO40

qdc_status Q*32 Input Position of the Quadrature Decoder Tool

NOTE
In the Width column: “Q” refers to the total number of Quadrature Decoder
tools available in the CustomLogic variant.

eGrabber Using CustomLogic



36

3. Reference Design

3.1. Introduction 37

3.2. Available Reference Modules 38

3.3. CustomLogic Delivery 43

3.4. Reference Design Build Procedure 44

eGrabber Using CustomLogic



37

3.1. Introduction

The CustomLogic package is delivered with a reference design intended to be used as a
template for the CustomLogic. The reference design exposes all interfaces available in the
CustomLogic.

The reference design is delivered as set of VHDL files with the following block diagram:

Reference design block diagram

eGrabber Using CustomLogic



38

3.2. Available Reference Modules

In this topic:
"Pixel LUT 8-bit " on page 38
"Pixel Threshold" on page 39
"Frame-to-Line Converter" on page 39
"Memory Traffic Generator" on page 40
"Memento Events" on page 40
"General Purpose I/O" on page 40
"Control Registers" on page 41

Pixel LUT 8-bit

The Pixel LUT 8-bit provides a Lookup Table operator in the CustomLogic reference design
pipeline. A Lookup Table operator can change any input pixel value by a predefined value on its
table. There are many applications for a Lookup Table, e.g., gamma correction and contrast
enhancement. The following figure illustrate a Lookup Table operator:

The Pixel LUT 8-bit can compute 16 (for 3602 Coaxlink Octo) or 32 (for 3603 Coaxlink Quad CXP-
12 and 3603-4 Coaxlink Quad CXP-12) 8-bit pixels per clock cycle. The Control Registers module
is used to control and upload the Lookup Table values.

NOTE
This module only supports Mono8 pixel format.

eGrabber Using CustomLogic



39

Pixel Threshold

The Pixel Threshold provides a Threshold operator in the CustomLogic reference design
pipeline. For each input pixel, the Threshold operator outputs 0 or 255 according to the
formulas:

OutputPixel = 255 when InputPixel ≥ Th;
OutputPixel = 0 when InputPixel < Th;
where Th is the Threshold level.

The Pixel Threshold computes 16 (for 3602 Coaxlink Octo) or 32 (for 3603 Coaxlink Quad CXP-12
and 3603-4 Coaxlink Quad CXP-12) 8-bit pixels per clock cycle. The Control Registers module is
used to control Pixel Threshold module.

NOTE
This module was generated by Vivado HLS using C++ code as input. To
regenerate this module, please follow the procedure described in the /05_
ref_design_hls/HLS_README.txt file .

NOTE
This module only supports Mono8 pixel format.

Frame-to-Line Converter

The Frame-to-Line Converter outputs one line for each input image. The outputted lines are
extracted from the input images in the following way:

□ From the first input image, we extract the first line.
□ From the second input image, we extract the second line and so on.
□ When the Frame-to-Line Converter extracts the last line of the input image (that is the

number of input images is equal to the image Ysize), it enables the flag End-of-Buffer at
the last transfer of this line and starts a new cycle of acquisition.

The Frame-to-Line Converter latches the input Metadata (source side) of the first image in a
sequence and transfers it to the output Metadata (destination side).

This module can be controlled via the Control Registers reference design.

eGrabber Using CustomLogic



40

Memory Traffic Generator

The Memory Traffic Generator writes data bursts of 1024 bytes incrementing the address from
0x0000000 and wrapping around at 0x40000000 (1 GB). The written data consists of an 8-bit
counter.

After each burst of 1024 bytes, the Memory Traffic Generator reads back the data at the same
address. It also reports the number of address wraparounds that have occurred.

This module can be controlled via the Control Registers reference design.

Memento Events

There are two sources of Memento Events in the reference design:
□ One is via the Control Registers where the m_memento_arg0 vector can be defined.
□ The other event is generated when an address wraparound occurs in the Memory Traffic

Generator. In this case, m_memento_arg1 receives the value of the address wraparound
counter.

General Purpose I/O

The status of all I/Os available in the General Purpose I/O interface can be read via the Control
Register. It is also possible to control the UserOutput registers and read back their status via the
Control Register.

eGrabber Using CustomLogic



41

Control Registers

The Control Registers module provides a mechanism to control/configure modules
implemented in the CustomLogic via the Control/Status Interface. The reference register map is
the following:

Register Address Description

Scratchpad 0x0000 Bits 31:0 (R/W)
□ 32-bit scratch pad (reset value => 0x00000000)

MemTrafficGen 0x0001
Bit 0 (R/W)

□ when ‘0’ => Memory Traffic Generator is disabled (reset
value)

□ when ‘1’ => Memory Traffic Generator is enabled

UserOutCtrl 0x0002

Bits 1:0 (R/W) => UserOutput0
Bits 3:2 (R/W) => UserOutput1
Bits 5:4 (R/W) => UserOutput2
Bits 7:6 (R/W) => UserOutput3
Bits 9:8 (R/W) => UserOutput4
Bits 11:10 (R/W) => UserOutput5
Bits 13:12 (R/W) => UserOutput6
Bits 15:14 (R/W) => UserOutput7
Bit fields encoding:

□ When “01” => UserOutputx <= ‘1’
□ When “10” => UserOutputx <= ‘0’
□ Others => No change

UserOutStatus 0x0003

Bit 0 (R) => UserOutput0 state
Bit 1 (R) => UserOutput1 state
Bit 2 (R) => UserOutput2 state
Bit 3 (R) => UserOutput3 state
Bit 4 (R) => UserOutput4 state
Bit 5 (R) => UserOutput5 state
Bit 6 (R) => UserOutput6 state
Bit 7 (R) => UserOutput7 state

IoSet1Status 0x0004

Bit 0 (R) => DIN11 state
Bit 1 (R) => DIN12 state
Bit 2 (R) => IIN11 state
Bit 3 (R) => IIN12 state
Bit 4 (R) => IIN13 state
Bit 5 (R) => IIN14 state
Bit 6 (R) => IOUT11 state
Bit 7 (R) => IOUT12 state
Bit 8 (R) => TTLIO11 state
Bit 9 (R) => TTLIO12 state

IoSet2Status 0x0005

Bit 0 (R) => DIN21 state
Bit 1 (R) => DIN22 state
Bit 2 (R) => IIN21 state
Bit 3 (R) => IIN22 state
Bit 4 (R) => IIN23 state
Bit 5 (R) => IIN24 state
Bit 6 (R) => IOUT21 state
Bit 7 (R) => IOUT22 state
Bit 8 (R) => TTLIO21 state
Bit 9 (R) => TTLIO22 state

MioSetAStatus 0x0006

Bit 0 (R) => MIO1 state
Bit 1 (R) => MIO2 state
…
Bit 31 (R) => MIO32 state

eGrabber Using CustomLogic



42

Register Address Description

MioSetBStatus 0x0007

Bit 0 (R) => MIO33 state
Bit 1 (R) => MIO34 state
…
Bit 7 (R) => MIO40 state

CLogicOutCtrl 0x0018

Bit 0 (R/W) => CustomLogicOutput0
Bit 1 (R/W) => CustomLogicOutput1
...
Bit 31 (R/W) => CustomLogicOutput31
Bit field encoding:

□ When ‘0’ => CustomLogicOutputx <= ‘0’
□ When ‘1’ => CustomLogicOutputx <= ‘1’

Frame2Line 0x1n00
Bit 0 (R/W)

□ when "01" => Frame-to-Line Converter bypass is enabled
(reset value)

□ when "10" => Frame-to-Line Converter bypass is disabled

MementoEvent 0x1n01
Bits 31:0 (R/W)

□ Any write in this register generates a Memento event and the
32-bit vector defined here is copied into CustomLogic_
event_arg0

PixelLut 0x1n02

Bit 0 (W, auto-clear)
□ when ‘1’ => Starts a new write sequence of coefficients

Bit 4 (R)
□ when ‘1’ => Indicates the end of a write sequence of

coefficients
(reset value => ‘0’)

Bits 9:8 (R/W)
□ when "01" => Pixel LUT bypass is enabled (reset value)
□ when "10" => Pixel LUT bypass is disabled
□ when others => No change

PixelLutCoef 0x1n03
Bits 7:0 (W)

□ Writes a coefficient into the Pixel LUT. Each write into this
register increments the coefficient index from 0 to 255.

PixelThreshold 0x1n04

Bits 7:0 (R/W)
□ when 0x00 => No change
□ when others => Set the Pixel Threshold level (reset value =>

0x01)
Bits 9:8 (R/W)

□ when "01" => Pixel Threshold bypass is enabled (reset value)

□ when "10" => Pixel Threshold bypass is disabled
□ when others => No change

NOTE
In the Address column “n” is a 4-bit field, which corresponds to the selector
of the device/camera channel.

eGrabber Using CustomLogic



43

3.3. CustomLogic Delivery

The Coaxlink CustomLogic package targets Vivado 2018.3 and contains the following folders:

● <variant short-name>/01_readme
Brief description how to generate a Vivado project from the Coaxlink CustomLogic package.

● <variant short-name>/02_coaxlink
Collection of proprietary files (encrypted HDL, netlists, and TCL scripts) necessary to build
the CustomLogic framework.
Note: These files shall not be modified.

● <variant short-name>/03_scripts
Collection of scripts to help developing on CustomLogic.

● <variant short-name>/04_ref_design
Reference design source files.

● <variant short-name>/05_ref_design_hls
HLS reference design source files.

● <variant short-name>/06_release
Pre-built reference design bitstream file.

Product Variant full name Variant short-name

3602 Coaxlink Octo
1-camera, custom-logic CoaxlinkOcto_1cam

2-camera, line-scan, custom-
logic CoaxlinkOcto_2cam_linescan

3603 Coaxlink Quad CXP-
12
3603-4 Coaxlink Quad
CXP-12

1-camera, custom-logic CoaxlinkQuadCxp12_1cam

1-camera, line-scan, custom-
logic

CoaxlinkQuadCxp12_1cam_
linescan

2-camera, custom-logic CoaxlinkQuadCxp12_2cam

4-camera, custom-logic CoaxlinkQuadCxp12_4cam

eGrabber Using CustomLogic



44

3.4. Reference Design Build Procedure

To build the reference design:

1. Decompress the package in a folder respecting Vivado requirements (no special characters in
the path). For example: c:/workspace/CustomLogic

2. Start Vivado

3. Execute the script "create_vivado_project.tcl" in the Tcl Console.
TCL command: source c:/workspace/CustomLogic/03_scripts/create_vivado_project.tcl
As result, a Vivado project is created at the folder 07_vivado_project. For example:
c:/workspace/CustomLogic/07_vivado_project.

4. Run Implementation.
TCL command: launch_runs impl_1

5. Execute the script "customlogic_functions.tcl" in the Tcl Console.
TCL command: source c:/workspace/CustomLogic/03_scripts/customlogic_functions.tcl
This script makes the following two functions available:
□ customlogic_bitgen: Generate .bit file.
□ customlogic_prog_fpga: Program FPGA via JTAG (volatile).

6. After completion of the implementation, run the function “customlogic_bitgen” in the TCL
console.
TCL command: customlogic_bitgen
This function updates the bitstream file in the folder 06_release.

7. After the bitstream is generated, update the FPGA by executing the function customlogic_
prog_fpga in the TCL console.
TCL command: customlogic_prog_fpga

NOTE
● This function requires a Xilinx JTAG programmer.

● This step is optional.

8. The generated bit-stream can also be programmed in a non-volatile way via the "Firmware
Manager Tools" on page 52.

eGrabber Using CustomLogic



45

4. Debugging

CustomLogicdoes not require any additional hardware to program the FPGA.

However, to use the debugging feature of Vivado (ChipScope), you may purchase the 3613 JTAG
Adapter Xilinx for Coaxlink(1) to connect the Xilinx Platform Cable USB II programmer (2) to the
FPGA.

Xilinx Platform Cable USB II programmer (2) connected to 3602 Coaxlink Octo through a 3613
JTAG Adapter Xilinx for Coaxlink (1)

3613 JTAG Adapter Xilinx for Coaxlink

eGrabber Using CustomLogic



46

5. Simulation Testbench

CustomLogic is delivered with a simulation testbench capable to stimulate all CustomLogic
interfaces. It also captures data at backend side from the Data Stream, Metadata, and Memento
Event interfaces. The results (captured data) are stored in files with extension ‘.dat’ in the folder:
<variant short-name>/07_vivado_project/CustomLogic.sim/sim_1/behave/xsim

The testbench is integrated in the Vivado project created by the script ‘create_vivado_project.tcl’.
To start the simulation, enter the command ‘launch_simulation’ into Vivado’s Tcl Console.

The file ‘SimulationCtrl_tb.vhd’ allows the user to control the testbench. This file contains a
process called ‘Simulation’ where is possible to create a sequence of actions for the testbench
via a set of commands as in the following example:

Simulation : process
Begin

-- Enable Data Stream at channel 0
EnableDataStream (clk,status,ctrl, 0);

-- Request 5 frames (256x10 Mono8) at channel 0.
FrameRequest (clk,status,ctrl, 0, 5, 256, 10, Mono8);

-- Disable Data Stream at channel 0
DisableDataStream (clk,status,ctrl, 0);

-- End simulation
std.env.finish;

end process;

A description of all available commands can be found in the file ‘SimulationCtrl_tb.vhd’ located in
the folder: <variant short-name>/04_ref_design/sim

NOTE
Regarding the ‘On-Board Memory Interface’, the storage size of the test
bench model is limited to 2 MB.

eGrabber Using CustomLogic



47

6. GenApi Features

6.1. CustomLogicControlAddress 48

6.2. CustomLogicControlData 49

See also: "GenApi Features > Interface Module > CustomLogic Category" section in the
Coaxlink series Handbook

eGrabber Using CustomLogic



48

6.1. CustomLogicControlAddress

Feature Info

Module Category Path Type Access
Interface Root → CustomLogic Integer RW

Value Info

Minimum value: 0

Maximum value: 65535

Short Description

Custom Logic Control Address.

Selected Features

● "CustomLogicControlData" on page 49

eGrabber Using CustomLogic



49

6.2. CustomLogicControlData

Feature Info

Module Category Path Type Access
Interface Root → CustomLogic Integer RW

Value Info

Minimum value: 0

Maximum value: 4294967295

Short Description

Custom Logic Control Data.

eGrabber Using CustomLogic



50

7. Managing Firmware

7.1. What's Firmware? 51

7.2. Firmware Manager Tools 52

7.3. Updating and Installing Firmware 54

7.4. Special Firmware Procedures 55

7.5. Firmware Recovery Switch 58

eGrabber Using CustomLogic



51

7.1. What's Firmware?

Firmware

In this context,"firmware" designates the content of the FPGA (Field Programmable Gate Array)
device of a card.

It defines the functionality of the card including the PCI Express end-point.

Firmware EEPROM

The FPGA used on Coaxlink and Grablink Duo frame grabbers is RAM-based; it needs to be
loaded every power up.

Considering that a PCI Express end point must be ready within 150 milliseconds of the power-up
time, the FPGA content, must be loaded quickly after having applied power to the card.
Therefore, the firmware is stored into a non-volatile flash EEPROM allowing a fast start-up of the
FPGA.

NOTE
This situation differs from other Euresys products, such as MultiCam cards,
where the FPGA content is loaded by the MultiCam driver when it starts or at
any time if a FPGA configuration change is requested during operation.

TIP
The eGrabber driver will never modify the content of the FPGA during
operation.

Firmware modifications

Any modification of the FPGA content requires a two-step operation:

1. The new firmware is written into the Flash EEPROM of the card using a firmware
management tool.

2. The new firmware is activated by cycling the system power.

eGrabber Using CustomLogic



52

7.2. Firmware Manager Tools

eGrabber is delivered with two firmware management tools:

● "Firmware Manager - GUI mode" on page 52 : A graphical user interface tool in eGrabber
Studio,

● "Firmware Manager - Command line mode" on page 52 : A command-line tool named
Firmware Manager Console.

Firmware Manager - GUI mode

To open the Firmware Manager in GUI mode, select one of the following methods:

● From the Windows Start Menu: click on Firmware Manager shortcut in the Euresys eGrabber
folder

● From the Welcome Screen of eGrabber Studio, click on the Firmware Manager button.

See also: "Firmware Manager (GUI mode)" section in the eGrabber Studio User Guide for a
detailed description.

Firmware Manager - Command line mode

Access

The command-line tool is named coaxlink-firmware.exe. It is s located in the firmware sub-folder
folder of the eGrabber installation folder.

On Windows, to open the Firmware Manager in command-line mode, select one of the following
methods:

● From the Windows Start Menu: click on Firmware Manager console shortcut in the Euresys
eGrabber folder

● Open a command prompt and open in the C:\Program Files\Euresys\eGrabber\firmware folder

On Linux, to open the Firmware Manager in command-line mode:

● Open a command shell in the /opt/euresys/egrabber/firmware folder

On macOS, to open the Firmware Manager in command-line mode:

● Open a command shell in the /usr/local/opt/euresys/egrabber/firmware folder.

Main commands

● Executing coaxlink-firmware --help displays a help message describing all the command
options.

● Executing coaxlink-firmware gui starts the Firmware Manager (Deprecated) graphical user
interface.

eGrabber Using CustomLogic



53

● Executing coaxlink-firmware list lists the properties of the firmware installed on each card
present in the system.

● Executing coaxlink-firmware update updates the firmware.

● Executing coaxlink-firmware install installs a new firmware variant.

Unless specified with a --firmware=FILE option, the tool uses the embedded library.

eGrabber Using CustomLogic



54

7.3. Updating and Installing Firmware

WARNING
Prior to executing this procedure, read the "Important Notices" section of
the release notes!

The eGrabber driver comes with all the firmware variants for all the Coaxlink and Grablink Duo
frame grabbers.

1. Determine the firmware variant that fulfills the functional requirements of your application:
e.g. '1-camera', '1-camera, line-scan', '2-camera'. Therefore, check the Firmware Variants per
Product section of the release notes for the firmware variants that are applicable to your
card.

2. Launch a Firmware Manager tool to perform a firmware update or to install a specific
firmware variant on your card(s) using the Firmware Manager tool in GUI mode with
eGrabber Studio or the Firmware Manager Console in command-line mode:

a. In eGrabber Studio, open the Firmware Manager pane:
Select the card to update
Select the firmware variant to install
Proceed with the installation

b. In command-line mode, to update a variant:
coaxlink-firmware update

c. In command-line mode, to install another firmware variant:
coaxlink-firmware install '[variant-name]'

3. Wait until completion of the firmware update

WARNING
Avoid turning off your PC during the firmware update procedure!

4. Repeat the procedure on all your Coaxlink and Grablink Duo frame grabbers.

5. Power off completely your PC and restart it to activate the newly loaded firmware.

eGrabber Using CustomLogic



55

7.4. Special Firmware Procedures

In this topic:

"GUI mode downgrade procedure" on page 55

"Command-line mode downgrade procedure " on page 56

"Command-line mode recovery procedure" on page 56

"Recovery procedure with recovery switch" on page 57

Directives

● Execute either the "GUI mode downgrade procedure" on page 55 or the "Command-line
mode downgrade procedure " on page 56 only when the application absolutely requires an
older firmware version!

● Execute either the "Command-line mode recovery procedure" on page 56 or the "Recovery
procedure with recovery switch" on page 57 only in case in case of card malfunction after
installation of a new firmware!

GUI mode downgrade procedure

WARNING
For Coaxlink and Grablink Duo frame grabbers having a Serial Number
above or equal to 10,000: this procedure must be executed on a PC with a
driver version 10.0.0 or higher installed!

1. Open the Firmware Manager pane in eGrabber Studio

2. In the Details view, click on the File button to select an alternate firmware source

3. Select the coaxlink-firmware.exe file delivered with the old driver required by the application

4. In the Cards view:

a. Select the card to downgrade

b. Select the firmware variant to install

c. Proceed with the installation

eGrabber Using CustomLogic



56

Command-line mode downgrade procedure

WARNING
For Coaxlink and Grablink Duo frame grabbers having a Serial Number
above or equal to 10,000: this procedure must be executed on a PC with a
driver version 10.0.0 or higher installed!

From the Firmware Manager Console executes one of the following commands:

● Keeping the same firmware variant:
coaxlink-firmware update --firmware=PATH_TO_FILE

● Changing also the firmware variant:
coaxlink-firmware install VARIANT_TO_INSTALL --firmware=PATH_TO_FILE

PATH-TO_FILE is the path to the coaxlink-firmware.exe file delivered with the old Coaxlink driver
required by the application.

Command-line mode recovery procedure

WARNING
For Coaxlink and Grablink Duo frame grabbers having a Serial Number
above or equal to 10,000: this procedure has to be executed on a PC with a
driver version 10.1.2 or higher installed!

1. From the Firmware Manager Console, execute the bank selection command:
coaxlink-firmware bank-select --next=ALTERNATE
The command displays a status indicating that the next firmware after boot is the other
bank:
[BANK0: current firmware][BANK1: alternate/next firmware] or
[BANK0: alternate/next firmware][BANK1: current firmware]

2. Power off the PC

3. Power on the PC

eGrabber Using CustomLogic



57

Recovery procedure with recovery switch

WARNING
(*) For Coaxlink and Grablink Duo frame grabbers having a Serial Number
above or equal to 10,000: this procedure has to be executed on a PC with a
driver version 10.1.2 or higher installed!

1. Power off the PC:

a. Remove the card from the PC

b. Set the "Firmware Recovery Switch" on page 58 of the card to the “Recovery” position

2. Power off a PC*

a. Insert the card into the PC

b. Power on the PC

c. Execute a"Updating and Installing Firmware" on page 54

d. Power off the PC

e. Remove the card

f. Set back the "Firmware Recovery Switch" on page 58 to the “Normal” position

eGrabber Using CustomLogic



58

7.5. Firmware Recovery Switch

Switch types and location

The firmware recovery switch is implemented with one of the following components:

● 3-pin header and a jumper

● 2-way DIP switch

See also: Board and Bracket Layouts in the Coaxlink series Handbook or in the Grablink Duo
Handbook to locate the firmware recovery switch. These drawings show its normal position.

Switch positions

The firmware recovery switch has two positions:

Normal position (factory default)

At the next power ON, the latest firmware successfully written into the Flash EEPROM is used to
program the FPGA. After FPGA startup completion, the card exhibits the standard PCI ID and the
driver allows normal operation.

Recovery position

At the next power ON, the last but one firmware successfully written into the Flash EEPROM is
used to program the FPGA. After FPGA startup completion, the card exhibits the recovery PCI ID
and the driver inhibits image acquisition.

Switch type Normal position Recovery position

3-pin header and a jumper

2-way DIP switch

eGrabber Using CustomLogic


	1. Introduction
	1.1. Principles
	1.2. Availability
	1.3. Framework

	2. Interfaces
	2.1. Global Signals
	2.2. Data (Pixel) Stream Interface
	2.3. Metadata Interface
	2.4. On-Board Memory Interface
	2.5. Memento Event Interface
	2.6. Control/Status Interface
	2.7. General Purpose I/O Interface

	3. Reference Design
	3.1. Introduction
	3.2. Available Reference Modules
	3.3. CustomLogic Delivery
	3.4. Reference Design Build Procedure

	4. Debugging
	5. Simulation Testbench
	6. GenApi Features
	6.1. CustomLogicControlAddress
	6.2. CustomLogicControlData

	7. Managing Firmware
	7.1. What's Firmware?
	7.2. Firmware Manager Tools
	7.3. Updating and Installing Firmware
	7.4. Special Firmware Procedures
	7.5. Firmware Recovery Switch


